Publications

Found 10 results
Author Keyword Title Type [ Year(Asc)]
Filters: Author is Vidács, László  [Clear All Filters]
2020
Tóth L, Nagy B, Vidács L, Gyimóthy T.  2020.  Mining Hypernyms Semantic Relations from Stack Overflow. Proceedings of the First International Workshop on Knowledge Graph for Software Engineering, KG4SE 2020 - ICSEW.
Kicsi A, Vidács L, Gyimothy T.  2020.  TestRoutes: A Manually Curated Method Level Dataset for Test-to-Code Traceability. Proceedings of the 17th International Conference on Mining Software Repositories, MSR 2020. :593-597.
Csuvik V, Horváth D, Horváth F, Vidács L.  2020.  Utilizing Source Code Embeddings to Identify Correct Patches. Proceedings of the Second International Workshop on Intelligent Bug Fixing (IBF 2020). :18-25.
Tóth L, Nagy B, Gyimóthy T, Vidács L.  2020.  Why Will My Question Be Closed? NLP-Based Pre-Submission Predictions of Question Closing Reasons on Stack Overflow Proceedings of the 42nd International Conference on Software Engineering, NIER Track (ICSE 2020). :105-108.
2019
Csuvik V, Kicsi A, Vidács L.  2019.  Evaluation of Textual Similarity Techniques in Code Level Traceability. Proceedings of the 19th International Conference on Computational Science and Its Applications (ICCSA 2019). :529-543.
Kicsi A, Rákóczi M, Vidács L.  2019.  Exploration and Mining of Source Code Level Traceability Links on Stack Overflow. Proceedings of ICSOFT 2019, 14th International Conference on Software Technologies. :339-346.
Kicsi A, Csuvik V, Vidács L, Horváth F, Beszédes Á, Gyimóthy T, Kocsis F.  2019.  Feature Analysis using Information Retrieval, Community Detection and Structural Analysis Methods in Product Line Adoption. Journal of Systems and Software. 155:70-90.
Csuvik V, Kicsi A, Vidács L.  2019.  Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability. Proceedings of the 10th International Workshop on Software and Systems Traceability, (SST 2019 @ ICSE). :29-36.
Tóth L, Vidács L.  2019.  Study of The Performance of Various Classifiers in Labeling Non-Functional Requirements. Information Technology and Control. 48:1-16.
Tóth L, Nagy B, Janthó D, Vidács L, Gyimóthy T.  2019.  Towards an Accurate Prediction of the Question Quality at Stack Overflow Using a Deep-Learning-Based NLP Approach. Proceedings of ICSOFT 2019, 14th International Conference on Software Technologies. :631-639.