Various Hyperplane Classifiers Using Kernel Feature Spaces

TitleVarious Hyperplane Classifiers Using Kernel Feature Spaces
Publication TypeJournal Article
Year of Publication2003
AuthorsKovács K, Kocsor A
JournalActa Cybernetica
Date PublishedJanuary

In this paper we introduce a new family of hyperplane classifiers. But, in contrast to Support Vector Machines (SVM) - where a constrained quadratic optimization is used - some of the proposed methods lead to the unconstrained minimization of convex functions while others merely require solving a linear System of equations. So that the efficiency of these methods could be checked, classification tests were conducted on standard databases. In our evaluation, classification results of SVM were of course used as a general point of reference, which we found were outperformed in many cases.